Clustering Labeled Data and Cross-Validation for Classification with Few Positives in Yeast

نویسندگان

  • Miles Trochesset
  • Anthony J. Bonner
چکیده

! #"%$&" '" ( *)+ , $& % $& . /$ ! 10! $2 ! 34$&053 6 7 8 9 : ; ! <$/ 6= $ $2 >)+$ ? @A B"C ! ! 3( ! :0! :3 5 $ 0D@E ! : F @G H$&0I3: J ! K$; -?C /$& ! #$ % : 8" 5L: /$& MN O ;3 PC" ! <$& % >" 6 Q? " R $& $<@H : TS%UWV V X U Y Z&[F\:V ] ^_V ] Y ] ` aE^ abU ] dcG 8 ! ! 3 3 e@A ! : / ! + ! 8" 0! 7f% 8 O$g ! h &@i 5 $& ?8 0H$& 7f% $2 5 "C : 05 8 h$ ' : &@j D $ 0!0! 3 I @i ! h05 $& ! 3 $ k/0! ! ! R O PC 8 07?# /$&050i C F I &@l" : 7 !LW 9 8"%$& #)I ! 05$2 3: 8$& 8 : D @m 3:$& !LW g $& 8" 0! GM< J LW 0! :"1$/ 8 n $ > > " Ln ! R ! $2 5 $ 0o 0! 5 3/ #)I 7 ;05$&6 05 K $2 $1 1 $& p@E 8 3 ! : / &@G !3 K $2 5 8 &@ " 7 5L: e$ % ( /$ kW D" C ! ! : +@E I 05$& 0! '3 qM< $&0! < ! nLW !3W$2 # ( " Ln ! r0! :3: ! ! R 3& ! : K 0H$& 7f% $& e$F %$& 0! 5 G@A & D : 8"%$2 ! 3 : C h 5s : otu R &@j 8 n J$& > %$& p . C !v9 8Ln 5 )I ( &@ > $2 $<$ r)u @E : % 8 %$& e C " ! 3B : ( D ! :0! :3 ! $ 0w" e 5 3 "C 6 C ! x : + q u q @ +$ " "C W$& q" @A & 8 o $&07 : 3: 1 : C G 8 n R /$ kW e 8 O f C "C ! ! @E 8 & D ! :0! :3 5 $ 0x" 8 u &@w I $& #$2 Q)+ &@A :05 9ylf m)u !05 8$B ). ! :0! :3 5 $ 0w $& $g 8 ! ! 3g 8 n $ . . PC ! ! 3N /$& 5 R0! $& ! 3N :0! ( %$& '$2 R $: C 507? $& "C ' ! / D ! :0! :3 ! $ 0x : 8 ! Q? ozn % 8)+ G /$&kW D ! 6 0! 3: ! $ 0w" C ! ! : I &@j3: G@A ! C $ R$& 5$& #)I 7 #$ 0! L: 0w &@q : Cf C G$ % '$ 0!0j$& 2LW O{ |:}~" ! ! : x

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Method for E-Maximization and Hierarchical Clustering of Image Classification

We developed a new semi-supervised EM-like algorithm that is given the set of objects present in eachtraining image, but does not know which regions correspond to which objects. We have tested thealgorithm on a dataset of 860 hand-labeled color images using only color and texture features, and theresults show that our EM variant is able to break the symmetry in the initial solution. We compared...

متن کامل

An Optimization K-Modes Clustering Algorithm with Elephant Herding Optimization Algorithm for Crime Clustering

The detection and prevention of crime, in the past few decades, required several years of research and analysis. However, today, thanks to smart systems based on data mining techniques, it is possible to detect and prevent crime in a considerably less time. Classification and clustering-based smart techniques can classify and cluster the crime-related samples. The most important factor in the c...

متن کامل

کاهش ابعاد داده‌های ابرطیفی به منظور افزایش جدایی‌پذیری کلاس‌ها و حفظ ساختار داده

Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...

متن کامل

Sample-oriented Domain Adaptation for Image Classification

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...

متن کامل

به کارگیری روش‌های خوشه‌بندی در ریزآرایه DNA

Background: Microarray DNA technology has paved the way for investigators to expressed thousands of genes in a short time. Analysis of this big amount of raw data includes normalization, clustering and classification. The present study surveys the application of clustering technique in microarray DNA analysis. Materials and methods: We analyzed data of Van’t Veer et al study dealing with BRCA1...

متن کامل

Detecting Concept Drift in Data Stream Using Semi-Supervised Classification

Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004